Q.1
Algorithm:
Knapsack_algo(W,n)
{
for
i:1 to n do
{
if(w[i]<W)then
{
x[i]:=1.0;
W=W-w[i];
}
}
if(i<=n)then
x[i]:=W/w[i];
}
Example:
Consider
the item along with their respective weight and values.
I={I1,I2,I3} w={5,4,3} v={6,5,4}
Knapsack
maximum weight, W=7.
Solution:
In
this fractional crieteria items are arranged by certain ratio, where the ratio
is value over profit(pi).Here solution proceed from maximum ratio to the
minimum ratio.
|
Item
|
Value(vi)
|
Weight(wi)
|
Pi=(vi/wi)
|
|
I1
|
6
|
5
|
1.2
|
|
I2
|
5
|
4
|
1.25
|
|
I3
|
4
|
3
|
1.33
|
Now,
arranging all the items according to their profit(pi)from maximum to minimum:
|
Item
|
Value(vi)
|
Weight(wi)
|
Pi=(vi/wi)
|
|
I3
|
4
|
3
|
1.33
|
|
I2
|
5
|
4
|
1.25
|
|
I1
|
6
|
5
|
1.2
|
Maximum
weight that can be inserted is 7.SO,items I3 & I2 can be easily
inserted.when item I1 is inserted, overflow occurs. So, it cannot be inserted.
So,
maximum profit obtained is 4+5=9.
No comments:
Post a Comment